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LETI'ER TO THE EDITOR 

Limitations on universality in the continuous-spin Ising 
model? 

George A Baker Jr and J D Johnson 
Theoretical Division, Los Alamos National Laboratory, University of California, Los 
Alamos, NM 87545, USA 

Received 31 January 1984 

Abstract. We give by explicit counterexample numerical evidence that critical exponent 
universality fails for the two-dimensional, continuous-spin, king model. This result is 
contrary to what has previously been assumed. 

To date, the most quantitative implementation of the renormalisation group theory 
of critical phenomena (see, for example, Ma 1978, and particularly the references 
therein) is the approach (Brezin er al 1976) based on the renormalised perturbation 
theory expansion of the Callan-Symanzik equations for A : 44: Euclidean, Boson field 
theory. The idea that this approach should describe the spin-: Ising model depends 
on a universality hypothesis (Baker and Kincaid 1979, 1981, and Parisi 1980). In the 
context of the continuous-spin Ising model, this universality hypothesis takes the 
mathematical form that certain double limits are independent of their order. 

Baker (1983) has investigated some of the consequences of this universality 
hypothesis for the continuous-spin Ising model. Specifically, he considered the partition 
function defined by 

-m 

where M is a formal normalisation constant such that Z ( H  = K = 0) = 1, N is the 
number of lattice sites, (6) is one half the set of nearest-neighbour lattice vectors, and 
K = J /  kT with J the exchange integral, k Boltzmann's constant and T the absolute 
temperature. A normalisation of the spin variable is imposed by the requirement that 

exp(-gos4-As2) ds. ( 2 )  

Equation ( 2 )  defines A as a function of go such that A is analytic in the region 0 < go < cc 
and ranges from A(0) = 4 to limgo+m &go = -2. The well known Gaussian model 
corresponds to go = 0 and the Ising model to go+ ao. 

From the universality assumption that Y is independent of go and from the rep- 
resentation for the spin-spin correlation length (second moment definition) near the 

m /c 1 = ( s 2 ) =  s ' e ~ p ( - ~ ~ , s ~ - ~ ~ s ~ )  ds I_, 

t Work performed under the auspices of the U S  DOE. 
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critical point, T > T,, 

s = D+(iO)[l - K / u i o ) l - v ,  (3) 

[ D + ( ~ ~ ) I  = o(K,(g0)/ A (go) )gg2-’/ u ) / ( 4 - d ) 1 .  (4) 

Baker (1983) found for spatial dimensionality, d 3 2, the amplitude formula 

Here 8 is a constant independent of go. Certain aspects of the formula are understand- 
able from what is now known or believed about the continuous-spin Ising model. For 
d = 2 or 3, equation (4) shows that D+(go) + 0 as go+ 0; this behaviour, for example, 
indicates the differences in v between the Gaussian model at go = 0 and models for 
go > 0. The models with go > 0 should reflect the strong coupling limit of the field 
theory with the corresponding ‘universal’ value for v since ~ o ~ g o / ~ 4 - - s  (Baker and 
Kincaid 1981). Conversely, any finite, bare, boson field theory, coupling constant go 
implies go=O at the critical point. For d = 4 ,  equation (4) is not well defined since 
4- d is in the denominator of the exponent. For d > 4, v is thought to be $ implying 
that equation (4) does not vanish as go + 0; this result is in agreement with Aisenman’s 
(1981) result that the critical index for the magnetic susceptibility agrees with the 
Gaussian model result for d > 4. These results are all consistent with the conventional 
picture. However, equation (4) suggests further details that imply the conventional 
picture does not extend from small values of go all the way to  go=^. In particular, 
A(&) = o for g b  = [~-(:)/r($)]~ = 0.114 236 6452 which forces D+ to diverge as go+ g b  

to maintain the universality assumption just mentioned. This behaviour of the ampli- 
tude can be interpreted as characteristic of a cross over from one value to v to another. 

Further analysis of equation (4) shows that there are five different cases; i.e., (i) 
io = 0, (ii) 0 < g‘ < gb,  (iii) go = gb,  (iv) g b  < go < CO, and (v) go = CO. That case (v) differs 
from case (iv) is found by combining equation (4) with conventional values of v and 
&(go) < CO for d 2 2 to imply that D++ 0 as go+ CO. Finally, we note that cases (i) 
and (ii) have a single-peaked spin distribution with a quadratic top while case (iv) has 
a quadratic minimum at s = 0 with two rounded peaks. 

As a consequence of the above analysis, we have elected to investigate case (iii), 
which we call the border case. Using the computer files of Baker and Kincaid (1981), 
we have computed the high temperature expansion for the magnetic susceptibility, x, 
the correlation length squared, c2, and (d2x/dH2)/~, where H is the magnetic field, 
through the tenth order. These series were computed for the linear, plane square, 
triangular, simple cubic, body-centred cubic, face-centred cubic, hyper-simple cubic, 
and hyper-body-centred cubic lattices. We have analysed all these series and found a 
number of results which may be of interest. However, for the present we will concen- 
trate on the magnetic susceptibility in two dimensions. The coefficients we obtained 
are listed in table 1. We have analysed these coefficients in several ways. First, by 
forming Pad6 approximants (see, for example, Baker and Graves-Morris 1981) to the 
logarithmic derivative, we obtain the estimates for the behaviour of the magnetic 
susceptibility near the critical point x a ( K ,  - K ) - Y  

plane square K, = 0.329* 0.002, y = 1.92 * 0.06, 

triangular K,=0.2130*0.0005, y =  1.92k0.03 
( 5 )  

where the apparent errors are estimated by the standard Hunter-Baker (Hunter and 
Baker 1973) prescription. In addition we have used a ratio based method due to 
Zinn-Justin (1979) which does not explicitly involve the coefficient subscript n and is a 
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Table 1. Series coefficients. 

n plane square lattice triangular lattice 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
4 

14.376 879 230 452 953 277 6735 
51.454 120 682 379 459 080 4787 

176.601080981470582306466 
604.310878998466269971823 

2021.51873126528735878924 
6745.48324192107913130386 

22 192.709 557 176 507 411 6227 
72853.8207002774995053795 

236889.741875463268566817 

1 
6 

33.5653188456794299165103 
182.573 094 097 645 768 119 780 

971.950597865016727198828 
5094.95317718249332165690 

26 390.663 148 511 955 195 8484 
135396.839691927325286174 
689235.301903841609817108 

3485628.81490497721518738 
17529844.5715191683416769 

second-order method. The last four estimates, for each lattice are 

plane square K, 0.327 640, 0.327 607, 0.328 788, 0.328 855, 

y 1.8264, 1.8096, 1.8849, 1.8791, 
( 6 )  

triangular K, 0.212 504, 0.212 505, 0.212 904, 0.212 903 

y 1.8679, 1.8680, 1.9081, 1.9080. 

We do not have a method to estimate reliably the error for this method; however, 
these limits appear to be consistent, within error, with those quoted in ( 5 ) .  Note that 
the results for the plane square are based on Zinn-Justin’s even-odd adaption because 
of the anti-ferromagnetic singularity present in that case. 

In the case where there could be a confluent singularity, we know that the results 
of the direct analysis may be biased. For this reason, we have performed a Baker- 
Hunter (Baker and Hunter 1973) confluent singularity analysis. It is geared to the 
idea that near the critical point 

i 

The method requires a hypothesis concerning K, and yields estimates for yi and Ai. 
We have moved the anti-ferromagnetic critical point to the vicinity of infinity by a 
Gaunt-Sykes (1979) transformation of the plane square lattice series before performing 
the confluent singularity analysis. We have scanned the region of K, given by ( 5 )  and 
found that, as one might guess from the work on the other series of Adler et a1 
(1982a, b), there is a significant narrowing of the scatter of the various central Pad6 
approximants at an appropriately selected value of the critical temperature. We find 
best results at 

plane square K ,  = 0.3300, y1 = 1.996 * 0.02, y 2  = 1.042 f 0.02, 

triangular K,=O.2134, y1 =2.001*0.01, y 2 =  1.063*0.01. 
(8) 

The ranges quoted represent the variation in the estimates with Pad6 approximant 
selected at fixed K, and are not to be interpreted as error estimates. The region in 
the Pad6 table of small, fluctuation is larger for the triangular than for the square 
lattice. The results (8) give for the correction to scaling index A, = y1 - ~ ~ ~ 0 . 9 3 8  
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which, while near A, = 1 is nevertheless a confluent singularity and responsible, in our 
opinion, for the differences between (5) and (6),  and (8). In this case, contrary to the 
three-dimensional Ising model, the amplitude of the subdominate singularity is substan- 
tial. We find that 

plane square Kc=0.3300, 5=0.061 70(1 -K/Kc)-2.00+0.4825(1 -K/Kc)- ' .05,  

triangular Kc=0.2134, x=0.2278(1 -K/Kc)-2.00+0.7707(1 -K/Kc)-'.06, 

well represent the behaviour of x near the critical point. 
On the basis of these analyses we conclude that the index y for the border model 

should be in the range y b =  1.89 to 2.02, and very likely close to Yb=2.00. Since it 
is known (McCoy and Wu 1973) for the two-dimensional Ising model ( ~ o = ~ )  that 
y, = 1.75, we conclude that yb # y I ,  and thus critical exponent universality does not 
hold for the continuous-spin king model (0 < go S 03). Of course, in the application 
of field-theoretic methods to the calculation of Ising model critical indices, universality 
was assumed. A note is made that direct estimates by that method (Baker et a1 1978) 
lead to y =  1.72k0.2,  AI  = 1.4k0.8 (there is a factor of two error in (4.16) of this 
reference) are sufficiently uncertain as not to shed any light on this question. We 
further note the results of Klauder (1982) in four-dimensions which suggest possible 
critical exponent dependence on the single-spin distribution function. 

We are happy to acknowledge helpful conversations with J M Kincaid. 
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